Nonlinear Evolutionary Mechanisms of Instability of Plane-Shear Slope: Catastrophe, Bifurcation, Chaos and Physical Prediction

نویسندگان

  • S. Q. Qin
  • J. J. Jiao
  • Z. G. Li
چکیده

A cusp catastrophe model is presented and the necessary and sufficient conditions leading to landslides are discussed. The sliding surface is assumed to be planar and is a combination of two media: medium 1 is elastic-brittle or strain-hardening and medium 2 is strain-softening. The shear stress-strain constitutive model for the strain-softening medium is described by the Weibull’s distribution law. This paper is a generalization and extension of the paper by Qin et al. (2001b), in which the shear stress-strain constitutive model for medium 2 was described by a negative exponent distribution; a special case of the Weibull’s distribution law. It is found that the instability of the slope relies mainly on both the stiffness ratio of the media and the homogeneity index and that a new role of water is to enlarge the material homogeneity or brittleness and hence to reduce the stiffness ratio. A nonlinear dynamic model (also called a physical forecasting model), which is derived by considering the time-dependent behavior of the strain-softening medium, is used to study the time prediction of landslides. An algorithm of inversion on the nonlinear dynamic model is suggested for seeking the precursory abnormality and abstracting mechanical parameters from the observed series of a landslide. A case study of the Jimingsi landslide is analysed and its nonlinear dynamic model is established from the observation series of this landslide using the suggested model and the algorithm of inversion. It is found that the catastrophic characteristic index jDj shows a quick rise till reaching an extremely high peak value after the slope evolves into the tertiary creep, and subsequently approaches a zero value prior to instability, which can be regarded as an important precursory abnormality index. By taking into account the evolutionary characteristic of the slope being in the secondary creep, a simplified nonlinear dynamic model is proposed for studying the properties of bifurcation and chaos. It is shown that the emergence of chaos depends on the mechanical parameters of the sliding-surface media.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlinear Catastrophe Model of Instability of Planar-slip Slope and Chaotic Dynamical Mechanisms of Its Evolutionary Process

This paper presents a nonlinear cusp catastrophe model of landslides and discusses the conditions leading to rapid-moving and slow-moving landslides. It is assumed that the sliding surface of the landslides is planar and is a combination of two media: one is elasto-brittle and the other is strain-softening. It is found that the instability of the slope relies mainly on the ratio of the sti€ness...

متن کامل

Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system

This paper studies the unstable mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain-softening medium which can be described by the Weibull s distribution theory of strength. It is found that the instability leading to coal bump depends...

متن کامل

Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions

The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...

متن کامل

Shear-induced chaos in nonlinear Maxwell-model fluids.

A generalized model for the behavior of the stress tensor in non-Newtonian fluids is investigated for spatially homogeneous plane Couette flow, showing a variety of nonlinear responses and deterministic chaos. Mapping of chaotic solutions is achieved through the largest Lyapunov exponent for the two main parameters: The shear rate and the temperature and/or density. Bifurcation diagrams and sta...

متن کامل

A Cusp Catastrophe Model of Instability of Slip-buckling Slope

A cusp catastrophe model is developed for slip-buckling slope by catastrophe theory, and the formulations of the necessary and su1⁄2cient conditions for instability of the slope are presented. It is found that di ̈erent regions (II, III and IV in Fig. 4) in the control space divided by the bifurcation set correspond well to the primary, secondary and tertiary creep phases. The corresponding disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004